Affiliation:
1. Institutes of Molecular Biology
2. Infectology, Friedrich-Loeffler-Institut, Südufer 10, 17493 Greifswald-Insel Riems, Germany
Abstract
ABSTRACT
After primary replication at the site of entry into the host, alphaherpesviruses infect and establish latency in neurons. To this end, they are transported within axons retrograde from the periphery to the cell body for replication and in an anterograde direction to synapses for infection of higher-order neurons or back to the periphery. Retrograde transport of incoming nucleocapsids is well documented. In contrast, there is still significant controversy on the mode of anterograde transport. By high-resolution transmission electron microscopy of primary neuronal cultures from embryonic rat superior cervical ganglia infected by pseudorabies virus (PrV), we observed the presence of enveloped virions in axons within vesicles supporting the “married model” of anterograde transport of complete virus particles within vesicles (C. Maresch, H. Granzow, A. Negatsch, B.G. Klupp, W. Fuchs, J.P. Teifke, and T.C. Mettenleiter, J. Virol.
84:
5528-5539, 2010). We have now extended these analyses to the related human herpes simplex virus type 1 (HSV-1). We have demonstrated that in neurons infected by HSV-1 strains HFEM, 17+ or SC16, approximately 75% of virus particles observed intraaxonally or in growth cones late after infection constitute enveloped virions within vesicles, whereas approximately 25% present as naked capsids. In general, the number of HSV-1 particles in the axons was significantly less than that observed after PrV infection.
Publisher
American Society for Microbiology
Subject
Virology,Insect Science,Immunology,Microbiology
Cited by
32 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献