Dual requirement for a newly identified phosphorylation site in p70s6k

Author:

Moser B A1,Dennis P B1,Pullen N1,Pearson R B1,Williamson N A1,Wettenhall R E1,Kozma S C1,Thomas G1

Affiliation:

1. Department of Growth Control, Friedrich Miescher Institut, Basel, Switzerland.

Abstract

The activation of p70s6k is associated with multiple phosphorylations at two sets of sites. The first set, S411, S418, T421, and S424, reside within the autoinhibitory domain, and each contains a hydrophobic residue at -2 and a proline at +1. The second set of sites, T229 (in the catalytic domain) and T389 and S404 (in the linker region), are rapamycin sensitive and flanked by bulky aromatic residues. Here we describe the identification and mutational analysis of three new phosphorylation sites, T367, S371, and T447, all of which have a recognition motif similar to that of the first set of sites. A mutation of T367 or T447 to either alanine or glutamic acid had no apparent effect on p70s6k activity, whereas similar mutations of S371 abolished kinase activity. Of these three sites and their surrounding motifs, only S371 is conserved in p70s6k homologs from Drosophila melanogaster, Arabidopsis thaliana, and Saccharomyces cerevisiae, as well as many members of the protein kinase C family. Serum stimulation increased S371 phosphorylation; unlike the situation for specific members of the protein kinase C family, where the homologous site is regulated by autophosphorylation, S371 phosphorylation is regulated by an external mechanism. Phosphopeptide analysis of S371 mutants further revealed that the loss of activity in these variants was paralleled by a block in serum-induced T389 phosphorylation, a phosphorylation site previously shown to be essential for kinase activity. Nevertheless, the substitution of an acidic residue at T389, which mimics phosphorylation at this site, did not rescue mutant p70s6k activity, indicating that S371 phosphorylation plays an independent role in regulating intrinsic kinase activity.

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

Cited by 93 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3