Direct Assessment of Viral Diversity in Soils by Random PCR Amplification of Polymorphic DNA

Author:

Srinivasiah Sharath1,Lovett Jacqueline1,Polson Shawn1,Bhavsar Jaysheel1,Ghosh Dhritiman2,Roy Krishnakali2,Fuhrmann Jeffry J.3,Radosevich Mark2,Wommack K. Eric1

Affiliation:

1. University of Delaware, Delaware Biotechnology Institute, Newark, Delaware, USA

2. Biosystems Engineering & Soil Science Department, University of Tennessee, Knoxville, Tennessee, USA

3. University of Delaware, Department of Plant and Soil Sciences, Newark, Delaware, USA

Abstract

ABSTRACT Viruses are the most abundant and diverse biological entities within soils, yet their ecological impact is largely unknown. Defining how soil viral communities change with perturbation or across environments will contribute to understanding the larger ecological significance of soil viruses. A new approach to examining the composition of soil viral communities based on random PCR amplification of polymorphic DNA (RAPD-PCR) was developed. A key methodological improvement was the use of viral metagenomic sequence data for the design of RAPD-PCR primers. This metagenomically informed approach to primer design enabled the optimization of RAPD-PCR sensitivity for examining changes in soil viral communities. Initial application of RAPD-PCR viral fingerprinting to soil viral communities demonstrated that the composition of autochthonous soil viral assemblages noticeably changed over a distance of meters along a transect of Antarctic soils and across soils subjected to different land uses. For Antarctic soils, viral assemblages segregated upslope from the edge of dry valley lakes. In the case of temperate soils at the Kellogg Biological Station, viral communities clustered according to land use treatment. In both environments, soil viral communities changed along with environmental factors known to shape the composition of bacterial host communities. Overall, this work demonstrates that RAPD-PCR fingerprinting is an inexpensive, high-throughput means for addressing first-order questions of viral community dynamics within environmental samples and thus fills a methodological gap between narrow single-gene approaches and comprehensive shotgun metagenomic sequencing for the analysis of viral community diversity.

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3