Deciphering the Effect of the Different N-Glycosylation Sites on the Secretion, Activity, and Stability of Cellobiohydrolase I from Trichoderma reesei

Author:

Qi Feifei1,Zhang Weixin1,Zhang Fengjie1,Chen Guanjun1,Liu Weifeng1

Affiliation:

1. State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan, Shandong, People's Republic of China

Abstract

ABSTRACT N-linked glycosylation modulates and diversifies the structures and functions of the eukaryotic proteome through both intrinsic and extrinsic effects on proteins. We investigated the significance of the three N-linked glycans on the catalytic domain of cellobiohydrolase I (CBH1) from the filamentous fungus Trichoderma reesei in its secretion and activity. While the removal of one or two N-glycosylation sites hardly affected the extracellular secretion of CBH1, eliminating all of the glycosylation sites did induce expression of the unfolded protein response (UPR) target genes, and secretion of this CBH1 variant was severely compromised in a calnexin gene deletion strain. Further characterization of the purified CBH1 variants showed that, compared to Asn270, the thermal reactivity of CBH1 was significantly decreased by removal of either Asn45 or Asn384 glycosylation site during the catalyzed hydrolysis of soluble substrate. Combinatorial loss of these two N-linked glycans further exacerbated the temperature-dependent inactivation. In contrast, this thermal labile property was less severe when hydrolyzing insoluble cellulose. Analysis of the structural integrity of CBH1 variants revealed that removal of N-glycosylation at Asn384 had a more pronounced effect on the integrity of regular secondary structure compared to the loss of Asn45 or Asn270. These data implicate differential roles of N-glycosylation modifications in contributing to the stability of specific functional regions of CBH1 and highlight the potential of improving the thermostability of CBH1 by tuning proper interactions between glycans and functional residues.

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

Cited by 35 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3