Use of the KlADH4 Promoter for Ethanol-Dependent Production of Recombinant Human Serum Albumin in Kluyveromyces lactis

Author:

Saliola Michele1,Mazzoni Cristina1,Solimando Nicola1,Crisà Alessandra1,Falcone Claudio1,Jung Gerard2,Fleer Reinhard2

Affiliation:

1. Department of Cell and Developmental Biology, Pasteur Institute-Cenci Bolognetti Foundation, University of Rome “La Sapienza,” 00185 Rome, Italy,1 and

2. Biotechnology Department, Rhone-Poulenc Rorer, 94403 Vitry cedex, France2

Abstract

ABSTRACT KlADH4 is a gene of Kluyveromyces lactis encoding a mitochondrial alcohol dehydrogenase activity which is specifically induced by ethanol. The promoter of this gene was used for the expression of heterologous proteins in K. lactis , a very promising organism which can be used as an alternative host to Saccharomyces cerevisiae due to its good secretory properties. In this paper we report the ethanol-driven expression in K. lactis of the bacterial β-glucuronidase and of the human serum albumin (HSA) genes under the control of the KlADH4 promoter. In particular, we studied the extracellular production of recombinant HSA (rHSA) with integrative and replicative vectors and obtained a significant increase in the amount of the protein with multicopy vectors, showing that no limitation of KlADH4 trans -acting factors occurred in the cells. By deletion analysis of the promoter, we identified an element (UAS E ) which is sufficient for the induction of KlADH4 by ethanol and, when inserted in the respective promoters, allows ethanol-dependent activation of other yeast genes, such as PGK and LAC4 . We also analyzed the effect of medium composition on cell growth and protein secretion. A clear improvement in the production of the recombinant protein was achieved by shifting from batch cultures (0.3 g/liter) to fed-batch cultures (1 g/liter) with ethanol as the preferred carbon source.

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

Cited by 38 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3