Influence of environmental parameters on phosphatidylcholine phospholipase C production in Listeria monocytogenes: a convenient method to differentiate L. monocytogenes from other Listeria species

Author:

Coffey A1,Rombouts F M1,Abee T1

Affiliation:

1. Department of Food Science, Wageningen Agricultural University, Netherlands.

Abstract

The ability to produce phosphatidylcholine phospholipase C (lecithinase) is associated with virulence in pathogenic species of Listeria. Levels of production vary greatly among members of the genus, and this virulence factor is not readily detectable in many members of the pathogenic species on conventional agar media containing egg yolk, a common substrate for the enzyme. In this study, the influence of a variety of environmental parameters, including temperature, pH, and salt concentration, on the production of lecithinase by a number of strains was evaluated. Lecithinase production by Listeria monocytogenes LO28 in brain heart infusion medium was optimal at 1.75 to 2.0% NaCl; pH 7.0 to 7.3, and 37 to 40 degrees C, and the presence of oxygen had no effect. In a chemically defined medium, the optimal NaCl concentration and temperature were lower at 0.75 to 1.0% NaCl and 33.5 degrees C. As detection of virulence factors is useful to assist in the identification and differentiation of Listeria species, this report shows that lecithinase activity can conveniently be detected within 36 h on a relatively inexpensive medium. Under the conditions described, L. monocytogenes could be distinguished from other members of the genus as a result of distinct lecithin degradation which was not evident in L. innocua, L. seeligeri, L. ivanovii, L. welshimeri, or L. murrayi/grayi.

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3