Cloning and characterization of the genes encoding the malolactic enzyme and the malate permease of Leuconostoc oenos

Author:

Labarre C1,Guzzo J1,Cavin J F1,Diviès C1

Affiliation:

1. Laboratoire de Microbiologie, ENSBANA, Dijon, France.

Abstract

Using degenerated primers from conserved regions of the protein sequences of malic enzymes, we amplified a 324-bp DNA fragment by PCR from Leuconostoc oenos and used this fragment as a probe for screening a Leuconostoc oenos genomic bank. Of the 2,990 clones in the genomic bank examined, 7 with overlapping fragments were isolated by performing colony hybridization experiments. Sequencing 3,453 bp from overlapping fragments revealed two open reading frames that were 1,623 and 942 nucleotides long and were followed by a putative terminator structure. The first deduced protein (molecular weight, 59,118) is very similar (level of similarity, 66%) to the malolactic enzyme of Lactococcus lactis; as in several malic enzymes, highly conserved protein regions are present. The synthesis of a protein with an apparent molecular mass of 60 kDa was highlighted by the results of labelling experiments performed with Escherichia coli minicells. The gene was expressed in E. coli and Saccharomyces cerevisiae and conferred "malolactic activity" to these species. The second open reading frame encodes a putative 34,190-Da protein which has the characteristics of a carrier protein and may have 10 membrane-spanning segments organized around a central hydrophilic core. Energy-dependent L-[14C]malate transport was observed with E. coli dicarboxylic acid transport-deficient mutants carrying the malate permease-expressing vector. Our results suggest that in Leuconostoc oenos the genes that encode the malolactic enzyme and a malate carrier protein are organized in a cluster.

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

Cited by 65 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3