Rapid Enrichment of Dehalococcoides-Like Bacteria by Partial Hydrophobic Separation

Author:

Temme Hanna R.1,Sande Kipp1,Yan Tao2,Novak Paige J.1

Affiliation:

1. Department of Civil, Environmental, and Geo-Engineering, University of Minnesota, Minneapolis, Minnesota, USA

2. Department of Civil and Environmental Engineering, University of Hawaii at Manoa, Honolulu, Hawaii, USA

Abstract

ABSTRACT Organohalide-respiring bacteria can be difficult to enrich and isolate, which can limit research on these important organisms. The goal of this research was to develop a method to rapidly (minutes to days) enrich these organisms from a mixed community. The method presented is based on the hypothesis that organohalide-respiring bacteria would be more hydrophobic than other bacteria as they dehalogenate hydrophobic compounds. The method developed tests this hypothesis by separating a portion of putative organohalide-respiring bacteria, those phylogenetically related to Dehalococcoides mccartyi , at the interface between a hydrophobic organic solvent and an aqueous medium. This novel partial separation technique was tested with a polychlorinated biphenyl-enriched sediment-free culture, a tetrachloroethene-enriched digester sludge culture, and uncontaminated lake sediment. Significantly higher fractions, up to 20.4 times higher, of putative organohalide-respiring bacteria were enriched at the interface between the medium and either hexadecane or trichloroethene. The selective partial separation of these putative organohalide-respiring bacteria occurred after 20 min, strongly suggesting that the separation was a result of physical-chemical interactions between the cell surface and hydrophobic solvent. Dechlorination activity postseparation was verified by the production of cis -dichloroethene when amended with tetrachloroethene. A longer incubation time of 6 days prior to separation with trichloroethene increased the total number of putative organohalide-respiring bacteria. This method provides a way to quickly separate some of the putative organohalide-respiring bacteria from other bacteria, thereby improving our ability to study multiple and different bacteria of potential interest and improving knowledge of these bacteria. IMPORTANCE Organohalide-respiring bacteria, bacteria capable of respiring chlorinated contaminants, can be difficult to enrich, which can limit their predictable use for the bioremediation of contaminated sites. This paper describes a method to quickly separate Dehalococcoides -like bacteria, a group of organisms containing organohalide-respiring bacteria, from other bacteria in a mixed community. From this work, Dehalococcoides -like bacteria appear to have a hydrophobic cell surface, facilitating a rapid (20 min) partial separation from a mixed culture at the surface of a hydrophobic liquid. This method was verified in a polychlorinated biphenyl-enriched sediment-free culture, an anaerobic digester sludge, and uncontaminated sediment. The method described can drastically reduce the amount of time required to partially separate Dehalococcoides -like bacteria from a complex mixed culture, improving researchers' ability to study these important bacteria.

Funder

National Science Foundation

National Science Foundation (NSF) Graduate Research Fellowship

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3