Turning off flagellum rotation requires the pleiotropic gene pleD: pleA, pleC, and pleD define two morphogenic pathways in Caulobacter crescentus

Author:

Sommer J M1,Newton A1

Affiliation:

1. Department of Molecular Biology, Princeton University, New Jersey 08544.

Abstract

We have identified mutations in three pleiotropic genes, pleA, pleC, and pleD, that are required for differentiation in Caulobacter crescentus. pleA and pleC mutants were isolated in an extensive screen for strains defective in both motility and adsorption of polar bacteriophage phi CbK; using temperature-sensitive alleles, we determined the time at which the two genes act. pleA was required for a short period at 0.7 of the swarmer cell cycle for flagellum biosynthesis, whereas pleC was required during an overlapping period from 0.6 to 0.95 of the cell cycle to activate flagellum rotation as well as to enable loss of the flagellum and stalk formation by swarmer cells after division. The third pleiotropic gene, pleD, is described here for the first time. A pleD mutation was identified as a bypass suppressor of a temperature-sensitive pleC allele. Strains containing this mutation were highly motile, did not shed the flagellum or form stalks, and retained motility throughout the cell cycle. Since pleD was required to turn off motility and was a bypass suppressor of pleC, we conclude that it acts after the pleA and pleC gene functions in the cell cycle. No mutants defective in both flagellum biosynthesis and stalk formation were identified. Consequently, we propose that the steps required for formation of swarmer cells and subsequent development into stalked cells are organized into at least two developmental pathways: a pleA-dependent sequence of events, responsible for flagellum biosynthesis in predivisional cells, and a pleC-pleD-dependent sequence, responsible for flagellum activation in predivisional cells and loss of motility and stalk formation in progeny swarmer cells.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

Cited by 86 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3