Physically associated enzymes produce and metabolize 2-hydroxy-2,4-dienoate, a chemically unstable intermediate formed in catechol metabolism via meta cleavage in Pseudomonas putida

Author:

Harayama S1,Rekik M1,Ngai K L1,Ornston L N1

Affiliation:

1. Department of Medical Biochemistry, University of Geneva, Switzerland.

Abstract

The meta-cleavage pathway of catechol is a major mechanism for degradation of aromatic compounds. In this pathway, the aromatic ring of catechol is cleaved by catechol 2,3-dioxygenase and its product, 2-hydroxymuconic semialdehyde, is further metabolized by either a hydrolytic or dehydrogenative route. In the dehydrogenative route, 2-hydroxymuconic semialdehyde is oxidized to the enol form of 4-oxalocrotonate by a dehydrogenase and then further metabolized to acetaldehyde and pyruvate by the actions of 4-oxalocrotonate isomerase, 4-oxalocrotonate decarboxylase, 2-oxopent-4-enoate hydratase, and 4-hydroxy-2-oxovalerate aldolase. In this study, the isomerase, decarboxylase, and hydratase encoded in the TOL plasmid pWW0 of Pseudomonas putida mt-2 were purified and characterized. The 28-kilodalton isomerase was formed by association of extremely small identical protein subunits with an apparent molecular weight of 3,500. The decarboxylase and the hydratase were 27- and 28-kilodalton polypeptides, respectively, and were copurified by high-performance-liquid chromatography with anion-exchange, hydrophobic interaction, and gel filtration columns. The structural genes for the decarboxylase (xylI) and the hydratase (xylJ) were cloned into Escherichia coli. The elution profile in anion-exchange chromatography of the decarboxylase and the hydratase isolated from E. coli XylI+XylJ- and XylI-XylJ+ clones, respectively, were different from those isolated from XylI+ XylJ+ bacteria. This suggests that the carboxylase and the hydratase form a complex in vivo. The keto but not the enol form of 4-oxalocrotonate was a substrate for the decarboxylase. The product of decarboxylation was 2-hydroxypent-2,4-dienoate rather than its keto form, 2-oxopent-4-enoate. The hydratase acts on the former but not the latter isomer. Because 2-hydroxypent-2,4-dienoate is chemically unstable, formation of a complex between the decarboxylase and the hydratase may assure efficient transformation of this unstable intermediate in vivo.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

Reference18 articles.

1. Bayly R. C. and M. G. Barbour. 1984. The degradation of aromatic compounds by the meta and gentisate pathways p. 253-294. In D. T. Gibson (ed.) Microbial degradation of organic compounds. Marcel Dekker Inc. New York.

2. Oxoenoic acids as metabolites in the bacterial degradation of catechols;Bayly R. C.;Biochem. J.,1969

3. Stereospecificity in meta-fission catabolic pathways;Burlingame R.;J. Bacteriol.,1983

4. Stereospecific enzymes in the degradation of aromatic compounds by Pseudomonas putida;Collinsworth W. L.;J. Bacteriol.,1973

5. Studies on the microbial degradation of steroid ring A;Coulter A. W.;J. Biol. Chem.,1968

Cited by 135 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3