Affiliation:
1. Department of Microbiology, College of Biological Science, University of Guelph, Ontario, Canada.
Abstract
The surfaces of three Bacillus thuringiensis strains possess an S layer composed of linear arrays of small particles arranged with p2 symmetry and with a = 8.5 nm, b = 7.2 nm, and gamma = 73 degrees. Platinum shadows of whole cells and S-layer fragments revealed the outer surface of the array to be smooth and the inner surface to be corrugated. Treatment with 2 M guanidine hydrochloride at pH 2.5 to 4 best removed the S layer for chemical characterization; it was a relatively hydrophilic 91.4-kilodalton protein with a pI of 5, no detectable carbohydrate, cysteine, methionine or tryptophan, and 21.2% nonpolar residues. No N-terminal homology with other S-layer proteins was evident. Antibody labeling experiments confirmed that the amount of S layer was proportional to the growth phase in broth cultures. Late-exponential- and stationary-growth-phase cells typically sloughed off fragments of S layer, and this may be the result of wall turnover. Indigenous autolytic activity in isolated walls rapidly digested the wall fabric, liberating soluble S-layer protein. At the same time, proteases frequently reduced the molecular weight of the 91.4-kilodalton protein, but these polypeptides could still be identified as S-layer components by immunoblotting. As cultures were serially subcultured, the frequency of appearance of the S layer diminished, and it was eventually lost. The dynamic nature of this S layer makes it atypical of most previously identified S layers and made it unusually difficult to characterize.
Publisher
American Society for Microbiology
Subject
Molecular Biology,Microbiology
Cited by
54 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献