Pyrosequencing of Tagged 16S rRNA Gene Amplicons for Rapid Deciphering of the Microbiomes of Fermented Foods Such as Pearl Millet Slurries

Author:

Humblot Christèle1,Guyot Jean-Pierre1

Affiliation:

1. IRD, UMR 204 IRD/Montpellier1/Montpellier2/SupAgro (NUTRIPASS), F-34394 Montpellier, France

Abstract

ABSTRACT Pearl millet slurries, mixed with groundnuts or not, were chosen as a model to investigate the feasibility of obtaining a rapid overview of community structure and population dynamics of fermented foods using pyrosequencing of tagged 16S rRNA gene amplicons. From 14 fermented samples collected either in a traditional small-scale processing unit in Burkina Faso or at laboratory scale, 137,469 sequences of bacterial 16S rRNA gene amplicons were characterized. Except for a few Proteobacteria , almost all the bacterial sequences were attributed to cultivable bacteria. This approach enabled 80.7% of the sequences to be attributed to a family and 70% to a genus but did not enable identification to the species level. The bacterial sequences were assigned to four phyla, with Firmicutes representing the highest diversity, followed by Proteobacteria , Actinobacteria , and Bacteroidetes , which were found only in the slurries prepared in traditional production units. Most of the Firmicutes were lactic acid bacteria, mainly represented by members of the Lactobacillus , Pediococcus , Leuconostoc , and Weissella genera, whose ratio varied from the onset to the end of the fermentation. The other bacteria present at the beginning of fermentation were generally no longer detected at the end, which is consistent with already-known patterns in the microbial ecology of fermented foods. In conclusion, this method seems very promising for rapid and preliminary microbial characterization in many samples of an unknown food sample, by determining numerous nucleic sequences simultaneously without the need for cloning and cultivation-dependent methods.

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3