Hemolymph Microbiomes of Three Aquatic Invertebrates as Revealed by a New Cell Extraction Method

Author:

Zhang Xinxu12,Sun Zaiqiao12,Zhang Xusheng12,Zhang Ming12,Li Shengkang12

Affiliation:

1. Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, China

2. Marine Biology Institute, Shantou University, Shantou, China

Abstract

ABSTRACT Symbiotic microorganisms have been found in the hemolymph (blood) of many aquatic invertebrates, such as crabs, shrimp, and oysters. Hemolymph is a critical site in the host immune response. Currently, studies on hemolymph microorganisms are mostly performed with culture-dependent strategies using selective media (e.g., thiosulfate-citrate-bile salts-sucrose [TCBS], 2216E, and LB) for enumerating and isolating microbial cells. However, doubts remain about the “true” representation of the microbial abundance and diversity of symbiotic microorganisms in hemolymph, particularly for uncultivable microorganisms, which are believed to be more abundant than the cultured microorganisms. To explore this, we developed a culture-independent cell extraction method for separating microbial cells from the hemolymph of three aquatic invertebrates ( Scylla paramamosain [mud crab], Litopenaeus vannamei [whiteleg shrimp], and Crassostrea angulata [Portuguese oysters]) involving filtration through a 5-μm-pore-size mesh filter membrane (the filtration method). A combination of the filtration method with fluorescence microscopy and high-throughput sequencing technique provides insight into the abundances and diversity of the total microbiota in the hemolymph of these three invertebrates. More than 2.6 × 10 4 cells/ml of microbial cells dominated by Escherichia-Shigella and Halomonas , Photobacterium and Escherichia-Shigella , and Pseudoalteromonas and Arcobacter were detected in the hemolymph of Scylla paramamosain , Litopenaeus vannamei , and Crassostrea angulata , respectively. A parallel study for investigating the hemolymph microbiomes by comparing the filtration method and a culture-dependent method (the plate count method) showed significantly higher microbial abundances (between 26- and 369-fold difference; P < 0.05) and less biased community structures of the filtration method than those of the plate count method. Furthermore, hemolymph of the three invertebrates harbored many potential pathogens, including Photobacterium , Arcobacter , and Vibrio species. Finally, the filtration method provides a solution that improves the understanding of the metabolic functions of uncultivable hemolymph microorganisms (e.g., metagenomics) devoid of host hemocyte contamination. IMPORTANCE Microorganisms are found in the hemolymph of invertebrates, a critical site in the host immune response. Currently, studies on hemolymph microorganisms are mostly performed with culture-dependent strategies. However, doubts remain about the “true” representation of the hemolymph microbiome. This study developed a culture-independent cell extraction method that could separate microbial cells from the hemolymph of three aquatic invertebrates ( S. paramamosain , L. vannamei , and C. angulata ) based on filtration through a 5-μm-pore-size mesh filter membrane (the filtration method). A combination of the filtration method with fluorescence microscopy and a high-throughput sequencing technique provides insight into the abundances and diversity of the total microbiota in the hemolymph of these three invertebrates. Our results demonstrate that the hemolymph of aquatic invertebrates harbors a much higher microbial abundance and more distinct microbial community composition than previously estimated. Furthermore, this work provides a less biased solution for studying the metabolic functions of uncultivable hemolymph microbiota devoid of host hemocyte contamination.

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3