A Glucan Synthase FKS1 Homolog in Cryptococcus neoformans Is Single Copy and Encodes an Essential Function

Author:

Thompson John R.1,Douglas Cameron M.1,Li Weili1,Jue Chong K.1,Pramanik Barnali1,Yuan Xiling1,Rude Thomas H.2,Toffaletti Dena L.2,Perfect John R.2,Kurtz Myra1

Affiliation:

1. Infectious Diseases, Merck Research Laboratories, Rahway, New Jersey 07065,1 and

2. Department of Medicine, Division of Infectious Diseases, Duke University Medical Center, Durham, North Carolina 277102

Abstract

ABSTRACT Cryptococcal meningitis is a fungal infection, caused by Cryptococcus neoformans , which is prevalent in immunocompromised patient populations. Treatment failures of this disease are emerging in the clinic, usually associated with long-term treatment with existing antifungal agents. The fungal cell wall is an attractive target for drug therapy because the syntheses of cell wall glucan and chitin are processes that are absent in mammalian cells. Echinocandins comprise a class of lipopeptide compounds known to inhibit 1,3-β-glucan synthesis, and at least two compounds belonging to this class are currently in clinical trials as therapy for life-threatening fungal infections. Studies of Saccharomyces cerevisiae and Candida albicans mutants identify the membrane-spanning subunit of glucan synthase, encoded by the FKS genes, as the molecular target of echinocandins. In vitro, the echinocandins show potent antifungal activity against Candida and Aspergillus species but are much less potent against C. neoformans . In order to examine why C. neoformans cells are less susceptible to echinocandin treatment, we have cloned a homolog of S. cerevisiae FKS1 from C. neoformans . We have developed a generalized method to evaluate the essentiality of genes in Cryptococcus and applied it to the FKS1 gene. The method relies on homologous integrative transformation with a plasmid that can integrate in two orientations, only one of which will disrupt the target gene function. The results of this analysis suggest that the C. neoformans FKS1 gene is essential for viability. The C. neoformans FKS1 sequence is closely related to the FKS1 sequences from other fungal species and appears to be single copy in C. neoformans . Furthermore, amino acid residues known to be critical for echinocandin susceptibility in Saccharomyces are conserved in the C. neoformans FKS1 sequence.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

Cited by 172 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3