Immunological responses of mice and cattle to baculovirus-expressed F and H proteins of rinderpest virus: lack of protection in the presence of neutralizing antibody

Author:

Bassiri M1,Ahmad S1,Giavedoni L1,Jones L1,Saliki J T1,Mebus C1,Yilma T1

Affiliation:

1. Department of Veterinary Microbiology and Immunology, University of California, Davis 95616.

Abstract

Rinderpest is a highly contagious viral disease of ruminants and has greater than 95% morbidity and mortality. The etiological agent, rinderpest virus (RPV), is a member of the family Paramyxoviridae and the genus Morbillivirus. Immune responses to both the hemagglutinin (H) and the fusion (F) antigens of morbilliviruses play an important role in the prevention of infection, and only attenuated live vaccines have been shown to provide protective immunity against the group. The lack of protection with inactivated vaccines has been attributed to the denaturation of the F glycoprotein of the virus. Our previous study, however, demonstrated complete protection of cattle vaccinated with infectious vaccinia virus recombinants expressing the H (vRVH) or F (vRVF) protein alone, even in the presence of only 4 U of serum-neutralizing (SN) antibody to RPV (T. Yilma, D. Hsu, L. Jones, S. Owens, M. Grubman, C. Mebus, M. Yamanaka, and B. Dale, Science 242:1058-1061, 1988). We have constructed recombinant baculoviruses that express the F (Fb) and H (Hb) glycoproteins of RPV. Furthermore, we have analyzed the immune responses of mice and cattle to these antigens. Cattle vaccinated with Fb or Hb or a mixture of both antigens were not protected from challenge inoculation with RPV, even when the SN titer was greater than in cattle vaccinated with vRVF alone. This lack of protection, in the presence of SN antibody, would indicate that live attenuated and recombinant vaccines induce immune responses necessary for protection (e.g., cell-mediated immunity) that are not generated by subunit or inactivated whole-virus vaccines.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3