Synergistic effect of mutations in invA and lpfC on the ability of Salmonella typhimurium to cause murine typhoid

Author:

Bäumler A J1,Tsolis R M1,Valentine P J1,Ficht T A1,Heffron F1

Affiliation:

1. Department of Medical Microbiology and Immunology, Texas A&M University, College Station 77843-1114, USA.

Abstract

Penetration of the intestinal mucosa at areas of Peyer's patches is an important first step for Salmonella typhimurium to produce lethal systemic disease in mice. However, mutations in genes that are important for intestinal invasion result in only moderately decreased virulence of S. typhimurium for mice. Here we report that combining mutations in invA and lpfC, two genes necessary for entry into Peyer's patches, results in a much stronger attenuation of S. typhimurium than inactivation of either of these genes alone. An S. typhimurium invA lpfC mutant was 150-fold attenuated by the oral route of infection but was fully virulent when the intestine was bypassed by intraperitoneal challenge of mice. During mixed-infection experiments, the S. typhimurium invA lpfC mutant showed a strong defect in colonizing Peyer's patches and mesenteric lymph nodes. These data suggest that mutations in invA and lpfC deactivate distinct pathways for intestinal penetration and colonization of Peyer's patches. While the inv-mediated pathway is widely distributed, the lpf operon is absent from many phylogenetic groups within the genus Salmonella. To investigate how acquisition of the lpf-mediated pathway for mucosal penetration contributed to evolution of virulence, we studied the relationship between the presence of the lpf operon and the pathogenicity for mice of 18 isolates representing 14 Salmonella serotypes. Only strains possessing the lpf operon were able to cause lethal infection in mice. These data show that both the invA- and lpfC-mediated pathways of intestinal perforation are conserved in mouse virulent Salmonella serotypes.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

Reference37 articles.

1. Ausubel F. M. R. Brent R. E. Kingston D. D. Moore J. G. Seidman J. A. Smith and K. Struhl (ed.). 1994. Current protocols in molecular biology. John Wiley & Sons New York N.Y.

2. Contribution of horizontal gene transfer and deletion events to the development of distinctive patterns of fimbrial operons during evolution of Salmonella serotypes;Bäumler A. J.;J. Bacteriol.,1997

3. Identification and sequence analysis of lpfABCDE, a putative fimbrial operon of Salmonella typhimurium;Bäumler A. J.;J. Bacteriol.,1995

4. The lpf fimbrial operon mediates adhesion to murine Peyer's patches;Bäumler A. J.;Proc. Natl. Acad. Sci. USA,1996

5. A PhoP repressed gene promotes Salmonella typhimurium invasion of epithelial cells;Behlau I.;J. Bacteriol.,1993

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3