Identification of Corn Plant Diseases and Pests Based on Digital Images using Multinomial Naïve Bayes and K-Nearest Neighbor

Author:

Resti Yulia,Irsan Chandra,Putri Mega Tiara,Yani Irsyadi,Ansyori Ansyori,Suprihatin Bambang

Abstract

Statistical machine learning has developed into integral components of contemporary scientific methodology. This integration provides automated procedures for predicting phenomena, case diagnosis, or object identification based on previous observations, uncovering patterns underlying data, and providing insights into the problem. Identification of corn plant diseases and pests using it has become popular recently. Corn (Zea mays L) is one of the essential carbohydrate-producing foodstuffs besides wheat and rice. Corn plants are sensitive to pests and diseases, resulting in a decrease in the quantity and quality of the production. Eradicate pests and diseases according to their type is a solution to overcome the problem of disease in corn plants. This research aims to identify corn plant diseases and pests based on the digital image using the Multinomial Naïve Bayes and K-Nearest Neighbor methods. The data used consisted of 761 digital images with six classes of corn plants disease and pest. The investigation shows that the K-Nearest Neighbor method has a better predictive performance than the Multinomial Naïve Bayes (MNB) method. The MNB method with two categories has an accuracy level of 92.72%, a precision level of 79.88%, a recall level of 79.24%, F1-score 78.17%, kappa 72.44%, and AUC 71.91%. Simultaneously, the K-Nearest Neighbor approach with k=3 has an accuracy of 99.54 %, a precision of 88.57%, recall 94.38%, F1-score 93.59%, kappa 94.30%, and AUC 95.45%.

Publisher

ARTS Publishing

Subject

Pharmacology, Toxicology and Pharmaceutics (miscellaneous),Physics and Astronomy (miscellaneous),General Mathematics,General Chemistry

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3