Investigation of the Physical Properties and Droplet Combustion Analysis of Biofuel from Mixed Vegetable Oil and Clove Oil

Author:

Gamayel Adhes,Zaenudin Mohamad,Mohammed M. N.,Yusuf Eddy

Abstract

The study of vegetable oil used as fuel in conventional engines leads to problems like the low volatility and high viscosity. This research aims to evaluate the droplet combustion characteristics that correlated with the density, viscosity, and the flash point of the biofuel from mixed vegetable oil with clove oil. Biofuels used in research are Jatropha Oil (CJO), Kapok Oil (KSO), Coconut oil (CCO), and all biofuel mixed with clove oil in 5% basis volume. Fuel properties that tested both biofuel and fuel mixture using the ASTM method are density (ASTM D1298), viscosity (ASTM D445), The flash point (ASTM D93). The droplet combustion experiment used suspended droplets placed in the junction of the K-type thermocouple and the Ni-Cr wire (as the coil heater) to heat the droplet until the combustion occurred. The result indicates that adding 5% clove oil in biofuel creates higher density, the viscosity decreases until 10%, and the flash point decrease to 30%. Droplet combustion results that adding 5% clove oil creating a more complete combustion process in CCO than KSO and CJO. Higher viscosity in KSO and CJO leads to eugenol and terpene (clove oil compound) trapping in the fuel droplet. Due to eugenol and terpene having great volatility, they are evaporating rapidly leading to secondary atomization and micro-explosion phenomena.

Publisher

ARTS Publishing

Subject

Pharmacology, Toxicology and Pharmaceutics (miscellaneous),Physics and Astronomy (miscellaneous),General Mathematics,General Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Toward Sustainable Smart Cities in Bahrain: A Groundbreaking Approach to Marine Renewable Energy Harnessing Sea Tides and Waves for a Greener Energy Future;2023 IEEE 8th International Conference on Engineering Technologies and Applied Sciences (ICETAS);2023-10-25

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3