Establishment of a Novel Rat Model of Gram-Negative Periprosthetic Joint Infection Using Cementless Hip Hemiarthroplasty

Author:

Ibrahim Mazen M.1234ORCID,Liu Yun5ORCID,Ure Kerstin6ORCID,Hall Clayton W.17ORCID,Mah Thien-Fah1ORCID,Abdelbary Hesham23ORCID

Affiliation:

1. Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada

2. Department of Surgery, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada

3. The Ottawa Hospital, Ottawa, Ontario, Canada

4. Department of Orthopaedic Surgery, Faculty of Medicine, Helwan University, Cairo, Egypt

5. Materials Characterization Core Facility, Centre for Advanced Materials Research (CAMaR), University of Ottawa, Ottawa, Ontario, Canada

6. Animal Behavior and Physiology Core, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada

7. Division of Medical Microbiology, Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada

Abstract

Background: Gram-negative periprosthetic joint infections (GN-PJIs) present unique challenges. Our aim was to establish a clinically representative GN-PJI model that recapitulates biofilm formation in vivo. We also hypothesized that biofilm formation on the implant surface would affect its ability to osseointegrate. Methods: Three-dimensionally-printed medical-grade titanium hip implants were used to replace the femoral heads of male Sprague-Dawley rats. GN-PJI was induced using 2 bioluminescent Pseudomonas aeruginosa strains: a reference strain (PA14-lux) and a mutant biofilm-defective strain (ΔflgK-lux). Infection was monitored in real time using an in vivo imaging system (IVIS) and magnetic resonance imaging (MRI). Bacterial loads were quantified utilizing the viable colony count. Biofilm formation at the bone-implant interface was visualized using field-emission scanning electron microscopy (FE-SEM). Implant stability, as an outcome, was directly assessed by quantifying osseointegration using microcomputed tomography, and indirectly assessed by identifying gait-pattern changes. Results: Bioluminescence detected by the IVIS was focused on the hip region and demonstrated localized infection, with greater ability of PA14-lux to persist in the model compared with the ΔflgK-lux strain, which is defective in biofilm formation. This was corroborated by MRI, as PA14-lux induced relatively larger implant-related abscesses. Biofilm formation at the bone-implant interface induced by PA14-lux was visualized using FE-SEM versus defective-biofilm formation by ΔflgK-lux. Quantitatively, the average viable colony count of the sonicated implants, in colony-forming units/mL, was 3.77 × 108 for PA14-lux versus 3.65 × 103 for ΔflgK-lux, with a 95% confidence interval around the difference of 1.45 × 108 to 6.08 × 108 (p = 0.0025). This difference in the ability to persist in the model was reflected significantly on implant osseointegration, with a mean intersection surface of 4.1 × 106 ± 1.99 × 106 μm2 for PA14-lux versus 6.44 × 106 ± 2.53 × 106 μm2 for ΔflgK-lux and 7.08 × 106 ± 1.55 × 106 μm2 for the noninfected control (p = 0.048). Conclusions: To our knowledge, this proposed, novel in vivo biofilm-based model is the most clinically representative for GN-PJI to date, since animals can bear weight on the implant, poor osseointegration was associated with biofilm formation, and localized PJI was assessed by various modalities. Clinical Relevance: This model will allow for more reliable testing of novel biofilm-targeting therapeutics.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Orthopedics and Sports Medicine,General Medicine,Surgery

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3