Comparison of “Human” and Artificial Intelligence Hand-and-Wrist Skeletal Age Estimation in an Epiphysiodesis Cohort

Author:

Kluck Dylan G.1ORCID,Makarov Marina R.1ORCID,Kanaan Yassine1ORCID,Jo Chan-Hee1ORCID,Birch John G.1ORCID

Affiliation:

1. Texas Scottish Rite Hospital for Children, Dallas, Texas

Abstract

Background: We previously demonstrated that the White-Menelaus arithmetic formula combined with skeletal age as estimated with the Greulich and Pyle (GP) atlas was the most accurate method for predicting leg lengths and residual leg-length discrepancy (LLD) at maturity in a cohort of patients treated with epiphysiodesis. We sought to determine if an online artificial intelligence (AI)-based hand-and-wrist skeletal age system provided consistent readings and to evaluate how these readings influenced the prediction of the outcome of epiphysiodesis in this cohort. Methods: JPEG images of perioperative hand radiographs for 76 subjects were independently submitted by 2 authors to an AI skeletal age web site (http://physis.16bit.ai/). We compared the accuracy of the predicted long-leg length (after epiphysiodesis), short-leg length, and residual LLD with use of the White-Menelaus formula and either human-estimated GP or AI-estimated skeletal age. Results: The AI skeletal age readings had an intraclass correlation coefficient (ICC) of 0.99. AI-estimated skeletal age was generally greater than human-estimated GP skeletal age (average, 0.5 year greater in boys and 0.1 year greater in girls). Overall, the prediction accuracy was improved with AI readings; these differences reached significance for the short-leg and residual LLD prediction errors. Residual LLD was underestimated by ≥1.0 cm in 26 of 76 subjects when human-estimated GP skeletal age was used (range of underestimation, 1.0 to 3.2 cm), compared with only 10 of 76 subjects when AI skeletal age was used (range of underestimation, 1.1 cm to 2.2 cm) (p < 0.01). Residual LLD was overestimated by ≥1.0 cm in 3 of 76 subjects by both methods (range of overestimation, 1.0 to 1.3 cm for the human-estimated GP method and 1.0 to 1.6 cm for the AI method). Conclusions: The AI method of determining hand-and-wrist skeletal age was highly reproducible in this cohort and improved the accuracy of prediction of leg length and residual discrepancy when compared with traditional human interpretation of the GP atlas. This improvement could be explained by more accurate estimation of skeletal age via a machine-learning AI system calibrated with a large database. Level of Evidence: Prognostic Level III. See Instructions for Authors for a complete description of levels of evidence.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Orthopedics and Sports Medicine,General Medicine,Surgery

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3