Deciphering the microbial signature of death: advances in post-mortem microbial analysis
Author:
Jangid Chitra1, Dalal Jyoti1, Kumari Kiran1
Affiliation:
1. Lovely Professional University
Abstract
Cadaver decomposition is a natural phenomenon intimately affected by numerous organisms such as insects, fungi, animals, and bacteria where they use the decaying body as their nutrition source. These organisms can be utilized in forensic science to estimate the post-mortem interval (PMI). The post-mortem interval refers to the time that has passed since the death of a person until the body was found. Forensic entomology is one of the popular approaches where successive colonization of insects on cadaver is studied to estimate PMI. However, sometime this method does not provide consistent results due to lack of insect activities during cold environment conditions or when crime scene is indoor. Therefore, a new approach is needed to aid forensic scientists to estimate PMI. Recently, researchers have noted that microbial communities have shown a predictable and clockwise successional pattern on decomposing cadavers and suggested this could be utilized to estimate PMI when this approach is etched with other established methods. The purpose of this review is to summarize some of the studies that have been conducted on the utility of microbial communities in estimating PMI and discuss the role of microbial communities in cadaver decomposition.
Publisher
Uniwersytet Jagiellonski - Wydawnictwo Uniwersytetu Jagiellonskiego
Reference67 articles.
1. 1. Adserias-Garriga, J., Quijada, N. M., Hernandez, M., Rodríguez Lázaro, D., Steadman, D., Garcia-Gil, L. J. (2017). Dynamics of the oral microbiota as a tool to estimate time since death. Molecular Oral Microbiology. https://doi.org/10.1111/omi.12191 2. 2. Baccino, E., Cattaneo, C., Jouineau, C., Poudoulec, J., Martrille, L. (2007). Cooling rates of the ear and brain in pig heads submerged in water: implications for postmortem interval estimation of cadavers found in still water. American Journal of Forensic Medicine and Pathology, 28(1), 80-85. https://doi.org/10.1097/01.PAF.0000233529.50779.08 3. 3. Baccino, E., De Saint Martin, L., Schuliar, Y., Guilloteau, P., Le Rhun, M., Morin, J. F., Leglise, D., Amice, J. (1996). Outer ear temperature and time of death. Forensic Science International, 83(2), 133-146. https://doi.org/10.1016/S0379-0738(96)02027-0 4. 4. Belk, A., Xu, Z. Z., Carter, D. O., Lynne, A., Bucheli, S., Knight, R., Metcalf, J. L. (2018). Microbiome data accurately predicts the postmortem interval using random forest regression models. Genes, 9(2). https://doi.org/10.3390/GENES9020104 5. 5. Bell, C. R., Wilkinson, J. E., Robertson, B. K., Javan, G. T. (2018). Sex-related differences in the thanatomicrobiome in postmortem heart samples using bacterial gene regions V1-2 and V4. Letters in Applied Microbiology, 67(2), 144-153. https://doi.org/10.1111/LAM.13005
|
|