Zaawansowane procedury NLP jako przesłanka rekonstrukcji idei wiedzy

Author:

Maciąg Rafał1ORCID

Affiliation:

1. Jagiellonian University in Kraków, Poland

Abstract

Advanced NLP Procedures as Premises for the Reconstruction of the Idea of Knowledge The article presents the current state of development of the Natural Language Processing (NLP) technology, in particular the GPT-3 language model, and presents its consequences for understanding the phenomenon of knowledge. The NLP technology has been experiencing remarkable development recently. The GPT-3 language model presents a level of advancement that allows it to generate texts as answers to general questions, as summaries of the presented text, etc., which reach the level surpassing the analogous level of human texts. These algorithmic operations lead to the determination of the probability distribution of its components. Texts generated by such a model should be considered as autonomous texts, using immanent, implicit knowledge embedded in language. This conclusion raises questions about the status of such knowledge. Help in the analysis is provided also by the theory of discourse, as well as the theory of discursive space based on it, that proposes the interpretation of knowledge as a trajectory of discourses in a dynamical space. Recognizing that knowledge may also be autonomous, and in particular not be at the exclusive disposal of humans, leads to the question of the status of artificial cognitive agents, such as the GPT-3 language model.

Funder

Narodowe Centrum Nauki

Publisher

Uniwersytet Jagiellonski - Wydawnictwo Uniwersytetu Jagiellonskiego

Reference51 articles.

1. 1. Aggarwal Charu C. (2018). Machine Learning for Text. Cham, Switzerland: Springer International Publishing.

2. 2. Angermuller Johannes, Maingueneau Dominique, Wodak Ruth (2014). An Introduction. W: Johannes Angermuller, Dominique Maingueneau, Ruth Wodak (red.), The Discourse Studies Reader: Main Currents in Theory and Analysis. Amsterdam-Philadelphia: John

3. 3. Benjamins Publishing Company, 1-14. Bender Emily M., Koller Alexander (2020). Climbing Towards NLU: On Meaning, Form, and Understanding in the Age of Data. W: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, 5185-5198, https://doi.org/10.18653/v1/2020.acl-main.463 [odczyt: 21.06.2022]. Bleicher Joseph (1980). Contemporary Hermeneutics: Hermeneutics as Method, Philosophy and Critique (reprint, 1982 edition). London-Boston: Routledge & Kegan Paul.

4. 4. Brown Tom B., Mann Benjamin, Ryder Nick, Subbiah Melanie, Kaplan Jared, Dhariwal Prafulla, Neelakantan Arvind, Shyam Pranav, Sastry Girish, Askell Amanda, Agarwal Sandhini, Herbert-Voss Ariel, Krueger Gretchen, Henighan Tom, Child Rewon, Ramesh Aditya, Ziegler Daniel M., Wu Jeffrey, Winter Clemens, Hesse Christopher, Chen Mark, Sigler Eric, Litwin Mateusz, Gray Scott, Chess Benjamin, Clark Jack, Berner Christopher, McCandlish Sam, Radford Alec, Sutskever Ilya, Amodei Dario (2020). Language Models are Few-Shot Learners, ArXiv:2005.14165 [Cs], https://arxiv.org/abs/2005.14165 [odczyt: 21.06.2022].

5. 5. Charniak Eugene (2019). Introduction to Deep Learning. Cambridge, Massachusetts: The MIT Press.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3