Immunocytochemical Analysis of α-Tubulin Distribution Before and After Rapid Axopodial Contraction in the Centrohelid Raphidocystis contractilis

Author:

Ikeda Risa,Kurokawa Miki,Murai Momoka,Saito Noboru,Ando Motonori

Abstract

The centrohelid Raphidocystis contractilis is a heliozoan that has many radiating axopodia, each containing a bundle of microtubules. Although the rapid contraction of the axopodia at nearly a video rate (30 frames/s) is induced by mechanical stimuli, the mechanism underlying this phenomenon in R. contractilis has not yet been elucidated. In the present study, we described for the first time an adequate immunocytochemical fixation procedure for R. contractilis and the cellular distribution of α-tubulin before and after rapid axopodial contraction. We developed a flow-through chamber equipped with a micro-syringe pump that allowed the test solution to be injected at a flow rate below the threshold required to induce rapid axopodial contraction. Next, we used this injection method for evaluating the effects of different combinations of two fixatives (paraformaldehyde or glutaraldehyde) and two buffers (phosphate buffer or PHEM) on the morphological structure of the axopodia. A low concentration of glutaraldehyde in PHEM was identified as an adequate fixative for immunocytochemistry. The distribution of α-tubulin before and after rapid axopodial contraction was examined using immunocytochemistry and confocal laser scanning fluorescence microscopy. Positive signals were initially detected along the extended axopodia from the tips to the bases and were distributed in a non-uniform manner within the axopodia. Conversely, after the induction of a rapid axopodial contraction, these positive signals accumulated in the peripheral region of the cell. These results indicated that axopodial microtubules disassemble into fragments and/ or tubulin subunits during rapid axopodial contraction. Therefore, we hypothesize that the mechanism of extremely rapid axopodial contraction accompanied by cytoskeletal microtubule degradati

Publisher

Uniwersytet Jagiellonski - Wydawnictwo Uniwersytetu Jagiellonskiego

Subject

General Agricultural and Biological Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3