Affiliation:
1. SULEYMAN DEMIREL UNIVERSITY
2. ABDULLAH GUL UNIVERSITY
3. SÜLEYMAN DEMİREL ÜNİVERSİTESİ
Abstract
Colloidal silica is a stable and homogeneously dispersed form of amorphous silicon dioxide (SiO2) nanoparticles in water. Colloidal silica has been the focus of research due to large surface area, biocompatibility, low toxicity and chemical and thermal stability. It has been used in a wide variety of industrial applications, including pulp and paper, chromatography, electronics, foods, and colloids, as well as in the ceramics and glass industry. In this study, colloidal silica was produced using cationic resin and sodium silicate and process conditions were optimized. Temperature (50-80 °C), mixing speed (200-500 rpm) and time (20-120 min.), which significantly affect the particle size, were selected as parameters. Particle size distribution (PSD) analyzes of colloidal silica particles were performed to determine appropriate levels of the parameters. The most suitable process conditions are 50°C temperature, 40 min. and 300 rpm. The average particle size of colloidal silica produced in optimum conditions was measured as 80 nm.
Reference22 articles.
1. [1] Bergna, H. E. (1994). Colloid chemistry of silica: An overview. The Colloid Chemistry of Silica Chapter 1. Advances in Chemistry 234(1994), 1-47. DOI: 10.1021/ba-1994-0234.ch001
2. [2] Asghar, K., Gholam Reza, V., Mohammad, A., & Mehdi, F. (2008). Preparation and characterization of colloidal silica in alkaline and constant range of pH. Iranian Journal of Chemistry and Chemical Engineering, 27(4).
3. [3] Blute, I., Pugh, R. J., van de Pas, J., & Callaghan, I. (2007). Silica nanoparticle sols. 1. Surface chemical characterization and evaluation of the foam generation (foamability). Journal of Colloid and Interface Science, 313(2). https://doi.org/10.1016/j.jcis.2007.05.013
4. [4] Hyde, E. D. E. R., Seyfaee, A., Neville, F., & Moreno-Atanasio, R. (2016). Colloidal Silica Particle Synthesis and Future Industrial Manufacturing Pathways: A Review. In Industrial and Engineering Chemistry Research (Vol. 55, Issue 33). https://doi.org/10.1021/acs.iecr.6b01839
5. [5] Falamaki, C. (2002). Mass transfer mechanisms in the fixed-bed ion-exchange process for dilute colloidal silica manufacture. Chemical Engineering and Technology, 25(9). https://doi.org/10.1002/1521-4125(20020910)25:9<905:AID-CEAT905>3.0.CO;2-8