IoT-based Heart Signal Processing System for Driver Drowsiness Detection

Author:

Yunidar Yunidar,Melinda Melinda,Khairani Khairani,Irhamsyah Muhammad,Basir Nurlida

Abstract

Traffic accidents often result in loss of life and significant economic losses. Indonesia's high number of traffic accidents indicates the need for effective solutions to overcome this problem. Developing a drowsiness detection device is one effort that can be made to reduce accidents caused by drowsy drivers. The data obtained in this study used driver heart rate data. The drowsiness detection tool was developed using the Wemos D1 Pro Esp8266 microcontroller and MAX30102 sensor. Testing was carried out on 25 subjects under two conditions: 'Drowsy' and 'Normal.' The driver's level of drowsiness is determined based on the heart rate measured by the detection device. The Blynk application is used as a visual interface to provide notifications via smartphone if the driver is drowsy. The accuracy of the drowsiness detection tool was compared with the results obtained from the Pulse Oximeter. This research shows that the drowsiness detection tool using the Wemos D1 Pro Esp8266 microcontroller and MAX30102 sensor has an accuracy of around 98% when compared with the pulse oximeter. The Blynk application successfully sends notifications precisely when the driver is drowsy. This study highlights the potential of drowsiness detection devices to improve traffic safety and reduce accidents caused by drowsy drivers.

Publisher

Tecno Scientifica Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3