Primary aluminum-air flow battery for high-power applications: Optimization of power and self-discharge
-
Published:2023-11-14
Issue:
Volume:
Page:
-
ISSN:1847-9286
-
Container-title:Journal of Electrochemical Science and Engineering
-
language:
-
Short-container-title:J. Electrochem. Sci. Eng.
Author:
Bolaños-Picado DayatriORCID,
Torres CindyORCID,
González-Flores DiegoORCID
Abstract
Aluminum-air batteries are a front-runner technology in applications requiring a primary energy source. Aluminum-air flow batteries have many advantages, such as high energy density, low price, and recyclability. One of the main challenges with aluminum-air batteries is achieving high power while parasitic corrosion and self-discharge are minimized. In this study, the optimization of an aluminum-air flow cell by multiple-parameters analysis and integration of a four-cell stack are shown. We also studied the incorporation of ammonium metavanadate (NH4VO3) as anticorrosive in 4 mol L-1 KOH electrolyte by discharge and polarization plots. It was concluded that NH4VO3 is an efficient anticorrosive at low currents, but it limits the battery reaction at high-current and high-power applications. Nevertheless, high currents inhibit the corrosion reaction using 4 mol L-1 KOH electrolyte, allowing high power and capacity without anticorrosive additives. The flow in the stack also plays a significant role, and parallel flow is suggested over cascade flow since the latter results in the progressive accumulation of hydrogen as the electrolyte flows through the stack.
Funder
Universidad de Costa Rica
Publisher
International Association of Physical Chemists (IAPC)
Subject
Electrochemistry,Materials Chemistry,Colloid and Surface Chemistry,Chemical Engineering (miscellaneous)