Self-assembling nanomaterial-based peptide surface for target cell adhesion
-
Published:2023-04-18
Issue:
Volume:
Page:
-
ISSN:1847-9286
-
Container-title:Journal of Electrochemical Science and Engineering
-
language:
-
Short-container-title:J. Electrochem. Sci. Eng.
Abstract
Non-covalent modification of electrode surfaces with nanoparticle-based peptides does not change the chemical properties of the electrode but allows electrochemical measurement of cell adhesion. This study examines the effect of self-modified nanomaterial/peptide surfaces on cell adhesion. This adhesion to the surface is caused by the negative Gibs free energy formed in the system because of the presence of -0H, sulfur, carbonyl, or reactive groups. A cheaper and more practical method for electrode surfaces targeting cell adhesion, which does not use heavy chemicals and EDC/NHS chemistry, is used in this work. Thanks to the bioactive materials immobilized on the screen-printed carbon electrode (SPCE) surface in a controlled manner and the surface chemistry offered by these materials, a biocompatible self-assembling nanomaterial-based peptide surface platform is created, and cell adhesion is measured by an electrochemical technique. After the characterization steps, electrochemical techniques created a calibration curve of the current value as a function of concentration for each cell line. The adhesion of the generated bioactive electrode surfaces to the selected cell lines was examined comparatively.
Publisher
International Association of Physical Chemists (IAPC)
Subject
Electrochemistry,Materials Chemistry,Colloid and Surface Chemistry,Chemical Engineering (miscellaneous)