Molecular interaction of natural dye based on Zea Mays and Bixa Orellana to nanocrystalline TiO2 into dye sensitized solar cells.

Author:

Huamán Aguirre Arnold AnthonyORCID,Salazar Salinas KarimORCID,Quintana Cáceda MaríaORCID

Abstract

This work studies the interaction between natural dyes obtained from Peruvian Zea mays and Bixa orellana seeds and nanostructured titanium dioxide in order to evaluate their function as sensitizers into solar cell devices. The effective attachment of dyes to the TiO2 layer is corroborated by the comparison of UV-Visible absorption and FT-IR spectra of the extracted dye solutions and sensitized TiO2 electrodes. The principal compounds from the seed extraction of Zea mays and Bixa orellana are cyanidin-3-glucoside (C3G) and bixin, respectively, which were analyzed in an isolated dye/cluster TiO2 system by molecular dynamic simulation. The results showed that the chemisorption is carried out through a consecutive deprotonation process and Ti-O bond formation by the monodentate OH and COOH anchoring groups, for C3G and bixin, respectively. Finally, we tested the effect of the dye – TiO2 interaction on the charge transfer by the comparison of the current-voltage (I-V) curves and incident photon-to-current conversion efficiency (IPCE) of the cells. We found that dye agglomeration in films with Bixa orellana and the high charge recombination of films with Zea mays are critical points to be solved. For this reason, we propose the pretreatment of the TiO2 film before sensitization with Bixa orellana and analyze the effects of pH in Zea Mays solution, in order to obtain better device efficiencies.

Publisher

International Association of Physical Chemists (IAPC)

Subject

Electrochemistry,Materials Chemistry,Colloid and Surface Chemistry,Chemical Engineering (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3