Abstract
The rapidly growing discipline of artificial intelligence (AI) seeks to develop software and computers that can do tasks that have historically required the intelligence of people. Machine learning (ML) is a subfield of AI that makes use of algorithms to "learn" from data's innate statistical patterns and structures to extrapolate information that is otherwise hidden. A growing emphasis on cosmetic dentistry has coincided with ZrO2‘s rise to prominence as a result of its improved biocompatibility, visually pleasant look, strong oxidation resistance, better mechanical properties, and lack of documented allergic responses. Advances in the field of AI and ML have led to novel applications of ZrO2 in dental devices for biological objectives. Artificial intelligence (AI) technologies have attracted a lot of attention in ZrO2-related research and therapeutic applications due to their ability to analyze data and discover connections between seemingly unrelated events. Specifically, their incorporation into zirconia is largely responsible for this. Zirconia's versatility in the scientific community means that how AI is used in the area varies with the specific directions in which zirconia is utilized. Therefore, this article primarily focuses on the use of AI in the biomedical use of ZrO2 in dentistry.
Publisher
International Association of Physical Chemists (IAPC)
Subject
Electrochemistry,Materials Chemistry,Colloid and Surface Chemistry,Chemical Engineering (miscellaneous)
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献