Author:
Slavova Miglena,Mihaylova-Dimitrova Elena,Mladenova Emiliya,Abrashev Borislav,Burdin Blagoy,Vladikova Daria
Abstract
In recent years, secondary metal air batteries have received considerable attention as promising technology for energy storage in combination with renewable energy sources. The oxidation of carbon in conventional gas-diffusion electrodes reduces the life of the secondary metal-air batteries. Replacement of the carbon-based material with zeolite is a possible solution for overcoming this problem which is the aim of this work.Zeolite is a natural or synthetic porous material which provides the necessary gas permeability. The required hydrophobicity of the electrodes is ensured by mixing the zeolite with an appropriate amount of polytetrafluoroethylene following a specially developed procedure.The experiments are performed in a home designed test cell which ensures measurements in both half-cell and full cell configuration. In this study the testing is carried out in 3-electrode homemade half-cell configuration with hydrogen reference electrode. The cell was subjected to cycling at charge/discharge current ± 2 mA/cm2 respectively.The obtained results show that the replacement of carbon with zeolite in the gas diffusion layer is a promising direction for optimization of the gas diffusion electrode.
Publisher
International Association of Physical Chemists (IAPC)
Subject
Electrochemistry,Materials Chemistry,Colloid and Surface Chemistry,Chemical Engineering (miscellaneous)
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献