Development of ciprofloxacin sensor using iron-doped graphitic carbon nitride as transducer matrix: Analysis of ciprofloxacin in blood samples

Author:

Vedhavathi Hattna ShivarudraiahORCID,Sanjay Ballur PrasannaORCID,Basavaraju MaheshORCID,Madhukar Beejaganahalli SangameshwaraORCID,Kumara Swamy NingappaORCID

Abstract

In the present work, we have synthesized an iron-decorated graphitic carbon nitride (Fe@g-C3N4) composite and employed it for electrochemical sensing of ciprofloxacin (CFX). The physicochemical characteristics of the Fe@g-C3N4 composite were analyzed with X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy-dispersive X-ray diffraction (EDX) spectroscopy methods. Further, the pencil graphite electrode (PGE) was modified with Fe@g-C3N4 composite to get PGE/Fe@g-C3N4 electrode and characterized the resultant electrode by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). Differential pulse voltammetry (DPV) was employed to determine the effect of concentration and interferents. The modified PGE/Fe@g-C3N4 electrode demonstrated the exceptional electrochemical performance for CFX identification and quantification with a LOD of 5.4 nM, a wide linear range of 0.001-1.0 µM, and high sensitivity of 0.0018 µA mM-1 cm-2. Besides, Fe@g-C3N4 modified PGE showed remarkable recovery results in qualitative analysis of CFX in human blood specimens. This research advocates that the Fe@g-C3N4 composite acts as an excellent transducer material in the electrochemical sensing of CFX in blood and standard samples. Further, the proposed strategy deduces that the PGE/Fe@g-C3N4 sensor can be a prospective candidate for the dynamic determination of CFX in blood serum and possibly ratified as an exceptional drug sensor for therapeutic purposes.

Publisher

International Association of Physical Chemists (IAPC)

Subject

Electrochemistry,Materials Chemistry,Colloid and Surface Chemistry,Chemical Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3