Additive concentration and nozzle moving speed influence on local copper deposition for electrochemical 3D-printing

Author:

Babchuk RomanORCID,Uschapovskiy DmytroORCID,Vorobyova ViktoriaORCID,Linyucheva OlgaORCID,Kotyk MykhailoORCID,Vasyliev GeorgiiORCID

Abstract

The local deposition process from copper sulfate electrolyte was investigated depending on nozzle moving speed and additive concentration in the electrolyte. A 2×2 cm square model was created and sliced in Ultimaker Cura software, uploaded in a 3D printer, and printed from the copper electrolyte on the stainless-steel surface. Low additive concentration in the electrolyte was found to influence dendrite formation in the corner sections of a square model. Nozzle movement speed was found to influence the deposition area and the thickness of the metal. The lowest tested nozzle movement speed of 5 s / voxel increased the deposition area by nearly 40 % in horizontal direction compared to 2.5 s / voxel. Further increase of nozzle movement speed to 1.6 s / voxel does not change the deposition area. The thickness in the corners increases by 2.5 times compared to the straight section of the square when the nozzle movement speed increases from 5 to 1.6 s / voxel. The non-uniform thickness of the deposited metal is caused by a considerable reduction of nozzle movement speed when it moves through the corner. The results obtained in this work can be further used to develop electrochemical 3D printing technology.

Funder

Ministry of Education and Science of Ukraine

Publisher

International Association of Physical Chemists (IAPC)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3