effect of coating drying conditions on bronze corrosion protection

Author:

Otmačić Ćurković HelenaORCID,Kapitanović AngelaORCID,Filipović MartinaORCID,Gorišek PetraORCID

Abstract

Waterborne coatings present a green alternative to solvent-borne coatings as only a small amount of organic solvent is released into the environment during drying. However, for waterborne coatings, the drying process is much more challenging due to the slow evaporation of water. In this work, the influence of drying temperature on the protective properties of a waterborne acrylic coating was studied. Its performance in corrosion protection of bronze substrates, representing the bronzes used for the sculptures placed outdoors, was examined. Corrosion properties were evaluated by linear polarization measurements and electrochemical impedance spectroscopy during three-week exposure to artificial acid rain solution. It was found that drying at ambient temperature resulted in modest corrosion protection, while drying at 55 °C ensured greater initial corrosion resistance, which gradually degraded during exposure to acid rain solution accompanied by the coating blistering. Drying of one-layer coating at 40 °C resulted in the formation of clearly visible corrosion products. If the coating was applied in three layers, the drying process was more efficient, leading to slightly higher polarization resistance values without visible corrosion at the bronze surface. Furthermore, the studied waterborne acrylic coating provided good corrosion protection of patinated bronze surfaces. Additionally, it was found that for efficient corrosion protection, it is preferable that the coating contains a corrosion inhibitor in order to avoid substrate corrosion during coating drying. When applied properly, studied coating does not alter the state of surfaces, both bare and patinated, which is important for its application in bronze cultural heritage protection.

Publisher

International Association of Physical Chemists (IAPC)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3