Characterization of wine polyphenols with a carbon/nanoparticle TiO2 electrode

Author:

Mićin SašaORCID,Ivošević DeNardis NadicaORCID,Martinez SanjaORCID,Špada VedranaORCID,N. Malinović BorislavORCID

Abstract

The positive effects of polyphenolic compounds on the sensory characteristics of wine and human health indicate a great need for a simple, fast and easily accessible method to determine the content of polyphenols in wine. The aim of this study is the electrochemical characterization of polyphenolic compounds in natural wine samples using a modified carbon paste electrode with TiO2 nanoparticles (MCPE/npTiO2) and improved voltammo­gram processing to obtain indicative data for polyphenols. The most marked influence of the modification of CPE with TiO2 nanoparticles was an increased sensitivity to electrooxi­dation, which is reflected in an increase of the anodic peak current. Of the five tested poly­phenols, i.e., gallic acid (GA), caffeic acid (CA), catechin (CT), quercetin (QV) and resveratrol (RE), the current maximum of the first two oxidation peaks increased only for GA by a factor of about 2 and for CT by a factor of about 1.5. Of the three red wines, Vranac (VR), Merlot (ME), Cabernet Sauvignon (CS); three white wines, Graševina (GR), Temjanika (TE), Char­donnay (CS) and one rose wine, Belrose Mediterranée Rosé (RO) tested, an increase by a factor of about 2.5 was observed for two red wines (VR, CS) and by a factor of 1.5 for one red wine (ME), one white wine (GR), and the rose wine (RO), while no increase in the current signal was observed for one of the white wines (CS). The most significant increase in the voltam­metric signal of GA at the MCPE/npTiO2 compared to other studied polyphenols can be explained by its higher affinity for adsorption on TiO2 nanoparticles. The investigated modified electrode provides an improved, linear and reproducible voltammetric response in wine samples. Consequently, MCPE/npTiO2 represents a good basis for the further deve­lopment of an integrated sensor/data system with the possibility of a broader application for the detection of polyphenols, especially GA, as an aroma and visually relevant parameter in winemaking.

Publisher

International Association of Physical Chemists (IAPC)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3