Determination of 4-nitrophenol using MoO3 loaded glassy carbon electrode via electrochemical sensing approach

Author:

Kamble Bhagyashri,Garadkar Kalyanrao M.ORCID,Sharma Kirankumar K.ORCID,Kamble PravinORCID,Tayade ShivajiORCID,Ajalkar Balu D.

Abstract

In order to raise possible ways of MoO3 synthesis and improve its existing applications, MoO3 nanomaterial was successfully synthesized through the solvo-hydrothermal route by utilizing a mixture of ionic liquid (1-butyl-3-methylimidazolium bromide) as a solvent, and water as co-solvent in 1:1 ratio. The morphology and structural parameters of IL-as­sisted MoO3 product were examined by X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FT-IR), and scanning electron microscopy (SEM). Additionally, the surface wettability and particle size distribution were inspected using the contact angle and dynamic light scattering (DLS) analysis. Glassy carbon electrode (GCE) surface was then modified by IL-assisted MoO3. The formed IL-MoO3/GCE was employed as an electro­chemical sensor for determination of 4-nitrophenol (4-NP), which is very toxic and important pollutant. The redox behavior of 4-NP at the surface of IL-MoO3/GCE was investigated by cyclic voltammetry (CV) and differential pulse voltammetry (DPV) techniques. Limits of detection (LOD) and limits of quantification (LOQ) determined from CV were found to be 6.76 and 22.5 mM, while from DPV recordings, 5.41 and 18.0 mM are found. The obtained results clearly reveal possible application of MoO3 for selective and sensitive sensing of 4-NP. The decorated electrode was successfully employed for determination of 4-NP in the river water real samples.

Publisher

International Association of Physical Chemists (IAPC)

Subject

Electrochemistry,Materials Chemistry,Colloid and Surface Chemistry,Chemical Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3