Numerical modelling of buried pipelines under DC stray current corrosion

Author:

Zhang Yaping,Feng Qiong,Yu Lianqing,Wu Chi-Man Lawrence,Ng Siu-Pang,Tang Xiao

Abstract

Corrosion of buried pipelines caused by stray currents is becoming a serious industrial and environmental problem. It is therefore necessary to study corrosion mechanisms of buried pipelines under DC stray currents in order to propose effective anti-corrosion measures. Since measurement of the potential is one of important ways to identify stray current intensity, the COMSOL Multiphysics software was used to simulate stray current corrosion dynamics of buried pipelines. It was also used to calculate the distribution and intensity changes of electrolyte potential in the cathodic protected system by solving Laplace’s three-dimensional equation. The obtained results showed that increased applied voltage leads to more positive shift of a pipeline potential, resulting in acceleration of stray current corrosion. On the contrary, increased soil resistivity can retard the corrosion process. The protected pipeline with a sacrificial anode suffers less corrosion interference than unprotected pipeline. Two crossed arrangement of pipelines makes no difference in corrosion of protected pipeline, but affects greatly on unprotected pipeline.

Publisher

International Association of Physical Chemists (IAPC)

Subject

Electrochemistry,Materials Chemistry,Colloid and Surface Chemistry,Chemical Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3