Influence of the exchange current density and overpotential for hydrogen evolution reaction on the shape of electrolytically produced disperse forms - Review

Author:

Nikolić Nebojša D.

Abstract

In this study, comprehensive survey of formation of disperse forms by the electrolysis from aqueous electrolytes and molten salt electrolysis has been presented. The shape of electrolitically formed disperse forms primarily depends on the nature of metals, determined by the exchange current density (j0) and overpotential for hydrogen evolution reaction as a parallel reaction to metal electrolysis. The decrease of the j0 value leads to a change of shape of dendrites from the needle-like and the 2D fern-like dendrites (metals characterized by high j0 values) to the 3D pine-like dendrites (metals characterized by medium j0 values). The appearing of a strong hydrogen evolution leads to formation of cauliflower-like and spongy-like forms (metals characterized by medium and low j0 values). The other disperse forms, such as regular and irregular crystals, granules, cobweb-like, filaments, mossy and boulders, usually feature metals characterized by the high j0 values. The globules and the carrot-like forms are a characteristic of metals with the medium j0 values. The very long needles were a product of molten salt electrolysis of magnesium nitrate hexahydrate. Depending on the shape of the disperse forms, i.e. whether they are formed without and with vigorous hydrogen evolution, formation of all disperse forms can be explained by either application of the general theory of disperse deposits formation or the concept of "effective overpotential". With the decrease of j0 value, the preferred orientation of the disperse forms changed from the strong (111) in the needle-like and the fern-like dendrites to randomly oriented crystallites in the 3D pine-like dendrites and the cauliflower-like and the spongy-like forms.

Publisher

International Association of Physical Chemists (IAPC)

Subject

Electrochemistry,Materials Chemistry,Colloid and Surface Chemistry,Chemical Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3