Electrochemical sensor for determination of hydroxylamine using functionalized Fe3O4 nanoparticles and graphene oxide modified screen-printed electrode

Author:

Tashakkorian Hamed,Aflatoonian Behnaz,Jahani Peyman Mohammadzadeh,Aflatoonian Mohammad Reza

Abstract

A simple strategy for determination of hydroxylamine based on Fe3O4 nanoparticles function­nalized by [2-(4-((3-(trimethoxysilyl)propylthio)methyl)1-H1,2,3-triazol-1-yl)acetic­acid] (FNPs) and graphene oxide (GO) modified screen-printed electrode (SPE), denoted as (Fe3O4 FNPs/GO/SPE), is reported. The electrochemical behavior of hydroxylamine was investigated at Fe3O4FNPs/GO/SPE by cyclic voltammetry (CV), differential pulse voltammetry (DPV) and chro­noamperometry (CHA) techniques in phosphate buffer solution (pH 7.0). Fe3O4 FNPs/GO/SPE as a novel electrochemical sensor exhibited catalytic activity toward the oxidation of hydroxyl­ami­ne. The potential of hydroxylamine oxidation was shifted to more negative potentials, and its oxidation peak current increased on the modified electrode, also indicating that under these conditions, the electrochemical process is irreversible. The electrocatalytic current of hydroxyl­amine showed a good relationship in the concentration range of 0.05–700.0 μM, with a detection limit of 10.0 nM. The proposed electrode was applied for the determination of hydroxyl­amine in water samples, too.

Publisher

International Association of Physical Chemists (IAPC)

Subject

Electrochemistry,Materials Chemistry,Colloid and Surface Chemistry,Chemical Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3