Screening technique on the selection of potent microorganisms for operation in microbial fuel cell for generation of power

Author:

Choudhury PayelORCID,Bhunia Biswanath,Bandyopadhyaya Tarun Kanti

Abstract

This paper focuses on determination of the influence of electrochemically active mi­cro­or­ga­ni­sms on the transmission of electrons from the respiratory enzymes to the electrode and as­sembling of exoelectrogens to the simulated wastewater medium. In this study, the total of eight microorganisms were experimentally tested to exhibit growth and high iron-reducing ability in the absence of mediators. A major connection was observed between the growth and iron-reduction ability of the micro­organism. The growth and iron-reduction ability were monitored experimentally over time. Based on output data, the screening was done among eight different micro­organisms, where Escherichia coli -K-12 was chosen as the most potent micro­organism for its wide application in a microbial fuel cell (MFC). In the present study, various biochemical process factors were optimized statistically using Tagu­chi metho­dology for the rapid development of growth and iron-reducing assay conditions. The design of various experimental trials was carried out using five process factors at three levels with orthogonal arrays (OA) layout of L18. Five process factors, including quantity of lactose, volume of trace element solution, inoculum percentage, pH, and temperature, were taken into consideration as imperative process factors and optimized for evaluation of growth of bacteria and iron reduction ability. The larger-is-best signal to noise (S/N) ratio, together with analysis of variance ANOVA, were used during optimization. Anticipated results demonstrated that the enhanced bacterial growth of 124.50 % and iron reduction ability of 112.6 % can be achieved with 8 g/L of lactose, 2 ml of trace element solution, 4 % (v/v) of inoculum, pH 7, and temperature of 35 oC. Furthermore, the growth and iron reduc­tion time profiles of Escherichia coli-K12 were performed to determine its feasibility in MFC. Open circuit voltage of 0.555 V was obtained over batch study on a single chamber microbial fuel cell (SCMFC).

Publisher

International Association of Physical Chemists (IAPC)

Subject

Electrochemistry,Materials Chemistry,Colloid and Surface Chemistry,Chemical Engineering (miscellaneous)

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3