High-velocity air fuel coatings for steel for erosion-resistant applications

Author:

Avcu Yasemin YıldıranORCID,Güney MertORCID,Avcu EgemenORCID

Abstract

High-velocity air fuel (HVAF) coating processes have advantages over conventional high-velocity oxygen fuel (HVOF) processes, resulting in coatings with superior properties. The present review first provides a concise overview of HVAF coatings, highlighting their advantages over HVOF coatings. Then, the fundamentals of solid particle, slurry, and cavitation erosion are briefly introduced. Finally, the performance of HVAF coatings for erosion-resistant applications is discussed in detail. The emerging research consistently reports HVAF-coatings having higher erosion resistance than HVOF-coatings, which is attributed to their elevated hardness and density and improved microstructural features that inhibit the surface damages caused by erosion. The dominant wear mechanisms are mainly functions of particle impact angle. For instance, the removal of the binder phase at high impact angles causes the accumulation of plastic strain on hard particles (e.g., WC particles) in the matrix, forming micro-cracks between the hard particles and the matrix, eventually decreasing the erosion resistance of HVAF coatings. The binder phase of HVAF-coatings significantly affects erosion resistance, primarily due to their inherent mechanical properties and bearing capacity of hard particles. Optimizing spraying parameters to tailor the microstructural characteristics of these coatings appears to be the key to enhancing their erosion resistance. The relationship between microstructural features and erosion mechanisms needs to be clarified to process coatings with tailored microstructural features for erosion-resistant applications.

Publisher

International Association of Physical Chemists (IAPC)

Subject

Electrochemistry,Materials Chemistry,Colloid and Surface Chemistry,Chemical Engineering (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A review on the design and analysis for the application of Wear and corrosion resistance coatings;International Journal on Interactive Design and Manufacturing (IJIDeM);2023-06-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3