A preliminary study into the effect of oxide chemistry on the bonding mechanism of cold-sprayed titanium dioxide coatings on SUS316 stainless steel substrate
-
Published:2022-08-10
Issue:
Volume:
Page:
-
ISSN:1847-9286
-
Container-title:Journal of Electrochemical Science and Engineering
-
language:
-
Short-container-title:J. Electrochem. Sci. Eng.
Author:
Omar Noor Irinah BintiORCID,
Mohamed Suhana Binti,
Yusuf Yusliza Binti,
Abdul Rahim Toibah Binti,
Mustafa Zaleha Binti,
Ismail Syahriza Binti,
Abu Bakar Ilyani Akmar BintiORCID,
Selvamani Santirraprahkash
Abstract
Current attention has focused on the preparation of thick ceramic coating of nanostructured materials as feedstock material using the thermal spray process. The cold spray method has appeared as a promising process to form ceramic nanostructured coating without significantly changing the microstructure of the initial feedstock materials due to its low processing temperature. However, deposition of ceramic powders by cold spray is not easy due to the brittle characteristics of the material. In this study, TiO2 coatings were deposited on unannealed stainless steel substrates and substrates that were annealed from room temperature to 700 °C prior to spraying. The adhesion strength was evaluated to investigate the bonding mechanism. The influence of the remaining surface oxide layer of chromium oxide, Cr2O3, which is thermodynamically preferred for stainless steel, on the bonding mechanism involved was investigated. The results showed that by increasing the annealing substrate temperature of stainless steel, the adhesion strength of the coatings (thicker oxide) is also increased. As a result, the bonding between the cold-sprayed TiO2 particle and the steel substrate is given by the chemical bonding of an inter-oxide reaction.
Publisher
International Association of Physical Chemists (IAPC)
Subject
Electrochemistry,Materials Chemistry,Colloid and Surface Chemistry,Chemical Engineering (miscellaneous)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献