Abstract
The purpose of this work was the fabrication of a conductive carbon nanotube (CNT) ink. The proposed CNT ink remained remarkably stable over several months. The method includes combining the covalent and non-covalent functionalization, resulting in ink that exhibits excellent storage stability. The covalent functionalization was performed in the acid medium using H2SO4 and HNO3, while the non-covalent functionalization used sodium dodecyl sulfate (SDS) and ultrasonication. The materials were characterized by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), electrochemical impedance spectroscopy (EIS), and cyclic voltammetry (CV). FTIR and SEM confirmed that at the non-covalent functionalization, SDS was successfully adsorbed on the f-CNT surface, while at the covalent functionalization, the functional groups (-COOH, C=O and -OH) were inserted into the CNT surface. Voltammetry and EIS indicated that SDS in the presence of functional groups facilitates electron transfer by improved electrical conductivity. The final product was a well-dispersed CNT ink with an average ohmic resistance of 18.62 kΩ. This indicates that CNT ink can be used in the fabrication of electrochemical sensors.
Publisher
International Association of Physical Chemists (IAPC)
Subject
Electrochemistry,Materials Chemistry,Colloid and Surface Chemistry,Chemical Engineering (miscellaneous)
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献