Twitter Sentiment Analysis During Covid-19 Outbreak with VADER

Author:

ÇILGIN CihanORCID,BAŞ MetinORCID,BİLGEHAN HandeORCID,ÜNAL CeydaORCID

Abstract

The Covid-19 outbreak, which has been under the influence of Europe since then, continues to spread rapidly especially in the American continent. Looking at the current data, the virus has affected about 250 million people and has killed more than five million people. Especially with the rapid spread of the outbreak in the European continent, this issue started to be discussed in social media. In particular, Twitter is the most frequently used micro-blogging in this workspace. In this study, it is aimed to analyze the tweets shared by many people, organizations and government agencies through Twitter during the global COVID-19 outbreak with sentiment analysis using the VADER Sentiment Analysis method. The hashtags #covid19, #Covid, #pandemic, #social-distancing, #socialdistance, #covid-19, #corona-virius, #coronavirus, #Chinesevirus, #Chinese-virus were used in this study. With these hashtags, a total of 60,243,040 tweets were collected from Twitter between January 1, 2020 and July 1, 2020. In this study, we use the VADER to classify the sentiments expressed in Twitter data related to Covid-19 and the compound scores of the resulting tweets were divided into five categories: Highly Positive, Positive, Neutral, Negative, Highly Negative. In addition, in the study, the Wordcloud was used to visualize the most frequently collected text data monthly, and N-grams were applied to the tweets to better understand the content of the tweets. When the results obtained in the study are examined, the tweets shared about Covid-19 in different periods of the release reflect different sentimental situations.

Publisher

AJIT - E Academic Journal of Information Technology

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3