Genotype by environment interaction in sunflower (Helianthus annus L.) to optimize trial network efficiency

Author:

Gonzalez-Barrios Pablo,Castro Marina,Pérez Osvaldo,Vilaró Diego,Gutiérrez Lucía

Abstract

Modeling genotype by environment interaction (GEI) is one of the most challenging aspects of plant breeding programs. The use of efficient trial networks is an effective way to evaluate GEI to define selection strategies. Furthermore, the experimental design and the number of locations, replications, and years are crucial aspects of multi-environment trial (MET) network optimization. The objective of this study was to evaluate the efficiency and performance of a MET network of sunflower (Helianthus annuus L.). Specifically, we evaluated GEI in the network by delineating mega-environments, estimating genotypic stability and identifying relevant environmental covariates. Additionally, we optimized the network by comparing experimental design efficiencies. We used the National Evaluation Network of Sunflower Cultivars of Uruguay (NENSU) in a period of 20 years. MET plot yield and flowering time information was used to evaluate GEI. Additionally, meteorological information was studied for each sunflower physiological stage.  An optimal network under these conditions should have three replications, two years of evaluation and at least three locations. The use of incomplete randomized block experimental design showed reasonable performance. Three mega-environments were defined, explained mainly by different management of sowing dates. Late sowings dates had the worst performance in grain yield and oil production, associated with higher temperatures before anthesis and fewer days allocated to grain filling. The optimization of MET networks through the analysis of the experimental design efficiency, the presence of GEI, and appropriate management strategies have a positive impact on the expression of yield potential and selection of superior cultivars.

Publisher

Instituto Nacional de Investigacion y Tecnologia Agraria y Alimentaria (INIA)

Subject

Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3