Traffic effects on soil compaction and sugar beet (Beta vulgaris L.) taproot quality parameters

Author:

Marinello Francesco,Pezzuolo AndreaORCID,Cillis Donato,Chiumenti Alessandro,Sartori Luigi

Abstract

Soil compaction is a critical issue in agriculture having a significant influence on crop growth. Sugar beet (Beta vulgaris L.) is accounted as a crop susceptible to compaction. Reduction of leaf area, final yield, and root quality parameters are reported in compacted soils. The most obvious visual indicator of topsoil compaction is root depth affected by agricultural tractor and machinery traffic up on the soil. Such indicators are mainly correlated to initial soil condition, tyre features, and number of passages. Monitoring and controlling frequency and position of machine traffic across the field, in such a way that passages are completed on specific, well-defined tracks, can assist with minimization of compaction effects on soil. The objective of the present work was to analyze the subsoil compaction during the growing period of sugar beet with different farming approaches including controlled traffic passages and random traffic. To this end, tests were carried out following each agro technical operation using penetrometer readings in order to monitor the state of cone-index after each step. In addition, at the harvesting time, root quality parameters were analyzed with particular attention to length and regularity of the taproot, total length, circumference, mass, and above-ground biomass. Such parameters were usefully implemented in order to evaluate the effects of controlled traffic passages compared to the random traffic in a cultivation of sugar beet. Results highlight how an increase in crop yield, derived from samples monitored, higher than 10% can be expected with implementation of a careful traffic management.

Publisher

Instituto Nacional de Investigacion y Tecnologia Agraria y Alimentaria (INIA)

Subject

Agronomy and Crop Science

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Modelling inertial measurement unit error parameters for an unmanned air vehicle;Communications Faculty of Sciences University of Ankara Series A2-A3 Physical Sciences and Engineering;2024-06-14

2. The Influence of Sugar Beet Cultivation Technologies on the Intensity and Species Biodiversity of Weeds;Agronomy;2024-02-18

3. The Health of Vineyard Soils: Towards a Sustainable Viticulture;Horticulturae;2024-02-06

4. Insights from an oxygen integrated monitoring and control system in land-based aquaculture;2023 IEEE International Workshop on Metrology for Agriculture and Forestry (MetroAgriFor);2023-11-06

5. Combining simulations and field experiments: Effects of subsoiling angle and tillage depth on soil structure and energy requirements;Computers and Electronics in Agriculture;2023-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3