Surplus thermal energy model of greenhouses and coefficient analysis for effective utilization

Author:

Yang Seung-Hwan,Son Jung-Eek,Lee Sang-Deok,Cho Seong-In,Ashtiani-Araghi Alireza,Rhee Joong-Yong

Abstract

<p>If a greenhouse in the temperate and subtropical regions is maintained in a closed condition, the indoor temperature commonly exceeds that required for optimal plant growth, even in the cold season. This study considered this excess energy as surplus thermal energy (STE), which can be recovered, stored and used when heating is necessary. To use the STE economically and effectively, the amount of STE must be estimated before designing a utilization system. Therefore, this study proposed an STE model using energy balance equations for the three steps of the STE generation process. The coefficients in the model were determined by the results of previous research and experiments using the test greenhouse. The proposed STE model produced monthly errors of 17.9%, 10.4% and 7.4% for December, January and February, respectively. Furthermore, the effects of the coefficients on the model accuracy were revealed by the estimation error assessment and linear regression analysis through fixing dynamic coefficients. A sensitivity analysis of the model coefficients indicated that the coefficients have to be determined carefully. This study also provides effective ways to increase the amount of STE.</p>

Publisher

Instituto Nacional de Investigacion y Tecnologia Agraria y Alimentaria (INIA)

Subject

Agronomy and Crop Science

Reference42 articles.

1. Solar energy utilization by a greenhouse: General relations

2. Estimation of global and diffuse solar radiation for hyderabad, Sindh, Pakistan.;Ahmed;J Basic Appl Sci,2009

3. Global, direct and diffuse solar-radiation in Syria

4. ASAE, 1988. ASAE Engineering Practice. Heating, ventilating and cooling greenhouses; Hahn RH & Rosentreter EE (eds). 35th edition. ASAE, St. Joseph.

5. GREENHOUSE COOLING AND HEAT RECOVERY USING FINE WIRE HEAT EXCHANGERS IN A CLOSED POT PLANT GREENHOUSE: DESIGN OF AN ENERGY PRODUCING GREENHOUSE

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3