Substrate properties, forest structure and climate influences wood-inhabiting fungal diversity in broadleaved and mixed forests from Northeastern Romania

Author:

Copoț OvidiuORCID,Tănase Cătălin

Abstract

Aim of the study: The main objective of this study was to find the factors which best explains the wood-inhabiting fungal species’ richness in beech and oak-dominated forests.Area of study: We focused on broadleaved and mixed forests found in Northeastern Romania.Materials and methods: 59 plots were randomly set up in broadleaved and mixed forest stands, in which vegetation structure, composition, and topoclimatic factors were quantified along with wood-inhabiting fungal richness. Generalized linear models were used to characterize relationship between fungal diversity and biotic and abiotic factors.Main results: 374 taxa were identified, with numerous species found to cohabitate, the highest sharing being between Fine Woody Debris and Downed Coarse Woody Debris. The best predictors of total diversity were related to the substrate, management, stand structure, and macroclimate. Higher volumes of logs and large branches in various decay stages increased fungal richness. The same effect was found in diverse forests, with large snags. Macroclimate and topoclimate positively influenced diversity, through De Martonne Aridity Index and snow cover length, both indicating macrofungi preferences for higher moisture of substrate. Silvicultural interventions had an ambivalent effect to fungal diversity, phenomenon observed through stump numbers and proportion.Research highlights: Particular environmental characteristics proved significantly important in explaining different wood-inhabiting fungal richness patterns. Substrate-related variables were the most common ones found, but they were closely linked to climate and forest stand variables.Keywords: Wood-inhabiting fungi; oak, beech and coniferous forests; substrate diversity; dead wood types; coarse woody debris; fine woody debris; climatic variables.Abbreviations used:ALT, elevation; ASPI, Aspect Index; BIO1, mean annual temperature; BIO4, temperature seasonality; BIO7, annual temperature range; BIO12, annual precipitation; BIO15, precipitation seasonality; CWD, coarse woody debris; DBH, diameter at breast height; DCWD, downed coarse woody debris; DCWD_DECAY, DCWD decay diversity; DCWD_DIV, DCWD taxonomic diversity; DCWD_SV, surface-volume ratio of DCWD; DCWD_VOL, DCWD volume; DMAI, De Martonne Aridity Index; DMAI_AU, Autumn DMAI; DMAI_SP, Spring DMAI; DMAI_SU, Summer DMAI; DMAI_WI, Winter DMAI; FAI, Forestry Aridity Index; FWD, fine woody debris; L_SNAG_BA, large snag basal area; OLD_BA, basal area of old trees; POI, Positive Openness Index; RAI, Recent Activity Index; SCL, snow cover length; SLOPE, slope; SNAG_N, snag density; STUMP_N, stump density; TPI, Topographic Position Index; TREE_BA, mean basal area of trees; TREE_DIV, tree' Shannon diversity.

Publisher

Instituto Nacional de Investigacion y Tecnologia Agraria y Alimentaria (INIA)

Subject

Soil Science,Ecology, Evolution, Behavior and Systematics,Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3