A hydroponic greenhouse fuzzy control system: design, development and optimization using the genetic algorithm

Author:

KHAFAJEH HamidORCID,BANAKAR AhmadORCID,MINAEI SaeidORCID,DELAVAR MajidORCID

Abstract

Aim of study: The design and development of a hydroponic greenhouse fuzzy control system. Area of study: The evaluation was performed using experimental data obtained from the literature. The construction and evaluation of the fuzzy control hydroponic greenhouse system was carried out in a greenhouse in Tehran, Iran. Material and methods: The greenhouse environmental conditions, including temperature, humidity, and carbon dioxide, were controlled. The design of a fuzzy controller begun with the selection of linguistic variables, process status, and input and output variables. The fuzzy control system consisted of three modules: 1) fuzzy module, 2) cost function, and 3) genetic algorithm for the adjustment of the greenhouse environmental conditions.The next step was to select a set of linguistic rules and the type of fuzzy inference process. The rules were set once, and the fuzzy set and output value needed to be specified after the inference, along with the development of a non-fuzzy strategy. Main results: The mean temperatures provided by the fuzzy control system during the day and night were 34.25°C and 23.22°C, respectively, which were improved to 31.17°C and 21.96°C after optimization. The mean humidity was 39.4% and 56.5% during the day and the night, respectively, which turned 60.22% and 74.59% after optimization. The control system also achieved desirable conditions in terms of CO2 amount. Research highlights: The results showed that the measured values of temperature and relative humidity of the greenhouse were improved after optimization with genetic algorithm.

Publisher

Instituto Nacional de Investigacion y Tecnologia Agraria y Alimentaria (INIA)

Subject

Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3