Phenology, growth, and yield of almond cultivars under organic and conventional management in southwestern Spain

Author:

Arroyo Francisco T.ORCID,Herencia Juan F.ORCID,Capote NievesORCID

Abstract

Aim of study: To advance implementation of sustainable agriculture from organic production system on almond crop by means of the assessment of physiological and agronomical responses of commercial almond cultivars. Area of study: Irrigated almond in the Guadalquivir River Valley. Material and methods: Physiological and agronomic aspects of almond such as defoliation, phenology, tree growth, N and P leaf reserves, susceptibility to aphids and fruit yield were assessed on five almond cultivars under organic and conventional production management during four consecutive seasons from 2017 to 2021. Main results: A lower flower density, tree growth, and almond production, an earlier and more intense defoliation degree, and a higher susceptibility to aphids were observed in the organic plot compared to the conventional orchard. 'Lauranne' was the cultivar that showed the best productivity under organic and conventional management. 'Marcona' showed the higher flower density and medium vigor, although was the most susceptible cultivar to aphids and the less productive cultivar under both managements. Research highlights: Cultivation of irrigated almond still presents numerous difficulties, especially the control of pests and diseases due to the use of environmentally friendly pesticides which are less effective than chemicals. These pathogenic factors and others such as nutrition especially affect the yield of the crop, although the differences with the conventional system are reduced over time. Despite these difficulties, the high added value of organic almonds together with the increasing demands by consumers of healthy environmental practices and food safety are a stimulus to continue and develop research on sustainable agriculture.

Publisher

Instituto Nacional de Investigacion y Tecnologia Agraria y Alimentaria (INIA)

Subject

Agronomy and Crop Science

Reference50 articles.

1. Alonso JM, Anson JM, Espiau MT, Company RSI, 2005. Determination of endodormancy break in almond flower buds by a correlation model using the average temperature of different day intervals and its application to the estimation of chill and heat requirements and blooming date. J Am Soc Hortic Sci 130: 308-318.

2. Arquero O, Lovera M, Salguero A, Morales J, Navarro A, 2005. Tree growth descriptors of main late-flowering almond varieties in the Mediterranean basin. Opt Méditerr A, Sém Méditerr OM A63: 71-74.

3. Arroyo FT, Jiménez-Bocanegra JA, García-Galavís PA, Santamaría C, Camacho M, Castejón M et al., 2013. Comparative tree growth, phenology and fruit yield of several Japanese plum cultivars in two newly established orchards, organic and conventionally managed. Span J Agric Res 11: 155-163.

4. Beaufils ER, 1973. Diagnosis and recommendation integrated system (DRIS). Soil Sci Bull No. 1, University of Natal, S. Africa. 132 pp.

5. BOJA, 2012. ORDEN de 20 de marzo de 2012, Reglamento específico de producción integrada de almendro. Boletín Oficial de la Junta de Andalucía nº 62, 29 de marzo de 2012.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3