Author:
Latifi Meysam,Rashidi Amir,Abdollahi-Arpanahi Rostam,Razmkabir Mohammad
Abstract
Aim of study: To assess selection methods via introgression to improve litter size in native and synthetic sheep breeds.Area of study: Sanandaj, Kurdistan, Iran.Material and methods: Selection approaches were performed using classical, genomic, gene-assisted classical (GasClassical) and gene-assisted genomic (GasGenomic) selection. Litter size trait with heritability of 0.1 including two chromosomes was simulated. On chromosome 1, a single QTL as the major gene was created to explain 40% of the total additive genetic variance. After simulation of a historical population, the animals from the last historical population were split into two populations. For the next 7 generations, animals were selected for favorable or unfavorable alleles to create distinct breeds of A or B, respectively. Then from the last generation, both males and females from breed B were selected to create a native population. On the other hand, males from breed A and females from breed B were mated to simulate a synthetic population. Finally, intra-population selections were carried out based on high breeding values during the last five generations.Main results: The genetic gain in the synthetic breed was higher than that of the native breed under all selection methods. The frequencies of favorable alleles after five generations in the classical, genomic, GasClassical and GasGenoimc selection approaches in the synthetic breed were 0.623, 0.730, 0.850 and 0.848, respectively.Research highlights: Combining gene-assisted selection with classical or genomic selection has the potential to improve genetic gain and increase the frequencies of favorable allele for litter size in sheep.
Publisher
Instituto Nacional de Investigacion y Tecnologia Agraria y Alimentaria (INIA)
Subject
Agronomy and Crop Science
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献